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Abstract
We proposed a generalized quantization scheme for non-zero sum games which
can be reduced to the two existing quantization schemes under an appropriate
set of parameters. Some other important situations are identified which are not
apparent in the two existing quantization schemes.

PACS numbers: 03.67.−a, 03.65.Ud, 02.50.Le, 03.65.Ta

1. Introduction

Game theory stepped into the quantum domain with the success of a hypothetical quantum
player over a classical player in a quantum Penny Flip game1 [3]. Later Eisert et al [4]
introduced an elegant scheme to deal with non-zero sum games quantum mechanically. In
this quantization scheme, the strategy space of the players is a two-parameter set of unitary
2×2 matrices. Starting with a maximally entangled initial state they analysed the well-known
Prisoner’s Dilemma game and showed that for a suitable quantum strategy the dilemma
disappears. They also pointed out a quantum strategy which always wins over all the classical
strategies. Later Marinatto and Weber [5] introduced another interesting and simple scheme
for the analysis of non-zero sum games in the quantum domain. They gave Hilbert structure
to the strategic spaces of the players. Using a maximally entangled initial state they allowed

1 David Meyer in his paper [1] describes the quantum Penny Flip game through a story of a spaceship which faces
a catastrophe. Suddenly a quantum being, Q, appears on the bridge to help save the spaceship. The quantum being
Q offers his help to save the spaceship on a condition that, Picard, the captain of the spaceship, beat him in a penny
flipping game. According to the game, Picard is to place the penny with head up in a box. Then Q has an option to
either flip the penny or leave it unchanged. Then Picard has the same options without having a look at the penny.
Finally Q takes the turn with the same options without looking at the penny. If in the end the penny is head up
then Q wins; otherwise Picard wins. Captain Picard is an expert of game theory and he knows that this game has
no deterministic solution (see [2]). In other words, there exist no such pair of pure strategies from which unilateral
change by the player enhances his/her payoff. To Picard’s surprise, Q always wins. This happens as Q is capable of
playing quantum strategies which is the superposition of head and tail in the two-dimensional Hilbert space.
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the players to play their tactics by applying the probabilistic choice of unitary operators. They
applied their scheme to an interesting game of Battle of the Sexes and found out the strategy
for which both the players can achieve equal payoffs.

Both Eisert and Marinatto’s and Weber’s schemes gave interesting results for various
quantum versions of the games [6–11]. It seems natural to look for a relationship between
these two apparently different quantization schemes. In these papers, we have developed a
generalized quantization scheme for non-zero sum games. The game of Battle of the Sexes has
been used as an example to introduce this quantization scheme which is also applicable to other
games. A separate set of parameters is identified for which our scheme reduces to those of
Marinatto and Weber [5] and Eisert et al [4]. Furthermore, we have identified other interesting
situations which are not apparent within the two existing quantization schemes. After a brief
introduction to Battle of the Sexes, we have extended Marinatto and Weber’s mathematical
framework by redefining unitary operators for our generalized quantization scheme.

2. Generalized quantization scheme

Battle of the Sexes is an interesting static game of complete information. In its usual exposition
two players, Alice and Bob, try to decide somewhere to spend Saturday evening. Alice wants
to go for opera while Bob is interested in watching TV at home and both would prefer to spend
the evening together. The game is represented by the following payoff matrix:

Bob

Alice
O

T

O T
(α, β) (σ, σ )

(σ, σ ) (β, α)


,

where O and T represent opera and TV, respectively, and α, β, σ are the payoffs for players
for different choices of strategies, such that, α > β > σ . There exist two Nash equilibria,
(O,O) and (T , T ), in the classical form of the game. In the absence of any communication
between Alice and Bob, there is a dilemma as the Nash equilibria (O,O) suit Alice whereas
Bob prefers the Nash equilibria (T , T ). As a result both players could end up with worst payoff
in the case where they play mismatched strategies. Marinatto and Weber [5] presented the
quantum version of the game to resolve this dilemma. In our earlier paper, we have further
extended their work to remove the worst case payoff situation in Battle of the Sexes [11]. On
the other hand Eisert et al [4] presented a different scheme to remove dilemma in the game of
Prisoner’s Dilemma through quantization of the game.

Here we present a generalized quantization scheme by redefining unitary operators in the
Marinatto and Weber scheme. Let Alice and Bob be given the following initial state:

|ψin〉 = cos
γ

2
|OO〉 + i sin

γ

2
|T T 〉. (1)

Here |O〉 and |T 〉 represent the vectors in the strategy space corresponding to opera and TV,
respectively and γ ∈ [

0, π
2

]
. The strategies of the two players are represented by the unitary

operator, Ui, which is of the form

Ui = cos
θi

2
Ri + sin

θi

2
Ci, (2)

where i = 1 or 2 and R,C are the unitary operators defined as

R|O〉 = eiφi |O〉, R|T 〉 = e−iφi |T 〉,
C|O〉 = −|T 〉, C|T 〉 = |O〉.

(3)
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Following [4], we restrict our treatment to a two-parameter set of strategies for
mathematical simplicity. After the application of the strategies, the initial state (1) transforms
into

|ψf 〉 = (U1 ⊗ U2)|ψin〉 (4)

and using equations (2) and (3) the above expression becomes

|ψf 〉 = cos
γ

2

[
cos

θ1

2
cos

θ2

2
ei(φ1+φ2)|OO〉 − cos

θ1

2
sin

θ2

2
eiφ1 |OT 〉

− cos
θ2

2
sin

θ1

2
eiφ2 |TO〉 + sin

θ1

2
sin

θ2

2
|T T 〉

]

+ i sin
γ

2

[
cos

θ1

2
cos

θ2

2
e−i(φ1+φ2)|T T 〉 + cos

θ1

2
sin

θ2

2
e−iφ1 |TO〉

+ cos
θ2

2
sin

θ1

2
e−iφ2 |OT 〉 + sin

θ1

2
sin

θ2

2
|OO〉

]
. (5)

The payoff operators for Alice and Bob are

PA = αPOO + βPT T + σ(POT + PTO) PB = αPT T + βPOO + σ(POT + PTO) (6)

where

POO = |ψOO〉〈ψOO|, |ψOO〉 = cos
δ

2
|OO〉 + i sin

δ

2
|T T 〉, (7a)

PT T = |ψT T 〉〈ψT T |, |ψT T 〉 = cos
δ

2
|T T 〉 + i sin

δ

2
|OO〉, (7b)

PTO = |ψTO〉〈ψTO|, |ψTO〉 = cos
δ

2
|TO〉 − i sin

δ

2
|OT 〉, (7c)

POT = |ψOT 〉〈ψOT |, |ψOT 〉 = cos
δ

2
|OT 〉 − i sin

δ

2
|TO〉, (7d)

with δ ∈ [
0, π

2

]
. The above payoff operators reduce to that of Eisert’s scheme for δ equal

to γ, which represents the entanglement of the initial state. And for δ = 0 above operators
transform into that of Marinatto and Weber’s scheme. In generalized quantization scheme
payoff for the players is calculated as2

$A(θ1, φ1, θ2, φ2) = Tr(PAρf ), $B(θ1, φ1, θ2, φ2) = Tr(PBρf ), (8)

where ρf = |ψf 〉〈ψf | is the density matrix for the quantum state given by (5) and Tr represents
the trace of a matrix. Using equations (5), (6), (8) the payoffs for players are obtained as

$A(θ1, φ1, θ2, φ2) = cos2 θ1

2
cos2 θ2

2

[
η sin2 γ

2
+ ξ cos2 γ

2
+ χ cos 2(φ1 + φ2) sin γ − σ

]

+ sin2 θ1

2
sin2 θ2

2

(
η cos2 γ

2
+ ξ sin2 γ

2
− χ sin γ − σ

)

+
(α + β − 2σ) sin γ − 2χ

4
sin θ1 sin θ2 sin(φ1 + φ2) + σ (9a)

2 The schemes of Eisert et al and Marinatto and Weber can also be compared using the entanglement operator
introduced by Eisert et al [14] without calculating the payoffs of the players. Take |ψin〉 = Ĵ (

γ
2 ) |OO〉, where Ĵ (

γ
2 ) =

exp(−i γ
2 D ⊗ D) is the entanglement operator. The strategic moves of Alice and Bob are associated with U1 and U2,

respectively. Execution of players’ moves leave the game in a state (U1 ⊗ U2) Ĵ (
γ
2 )|OO〉. Then Alice and Bob

forward their qubits to arbiter for measurement and the final state of the game prior to the detection is |ψf 〉 =
Ĵ †( δ

2 )(U1 ⊗ U2)Ĵ (
γ
2 )|OO〉, where Ĵ ( δ

2 ) = exp(−i δ
2 D ⊗ D) is the disentanglement operator. Putting δ = γ gives

the original scheme of Eisert et al and letting δ = 0 with restriction of U1 and U2 as a linear combination of identity
operator I, and the flip operator σx , the scheme of Marinatto and Weber is retrieved.
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$B(θ1, φ1, θ2, φ2) = cos2 θ1

2
cos2 θ2

2

[
ξ sin2 γ

2
+ η cos2 γ

2
− χ cos 2(φ1 + φ2) sin γ − σ

]

+ sin2 θ1

2
sin2 θ2

2

(
ξ cos2 γ

2
+ η sin2 γ

2
+ χ sin γ − σ

)

+
(α + β − 2σ) sin γ + 2χ

4
sin θ1 sin θ2 sin(φ1 + φ2) + σ, (9b)

where ξ = α cos2 δ
2 + β sin2 δ

2 , η = α sin2 δ
2 + β cos2 δ

2 and χ = (α−β)

2 sin δ. Classical results
can easily be found from equations (9a), (9b) by simply unentangling the initial quantum state
of the game, i.e., letting γ = 0. Furthermore, all the results of both Marinatto and Weber [5]
and Eisert et al [4] are embedded in these payoffs. For different combinations of δ and φ′s
there exist the following possibilities:

Case (a). When δ = 0 and
(i) φ1 = 0, φ2 = 0, then the payoffs for the players from equations (9a), (9b) reduce to

$A(θ1, φ1,θ2, φ2) = cos2 θ1

2

[
cos2 θ2

2
(α + β − 2σ) − α sin2 γ

2
− β cos2 γ

2
+ σ

]

+ cos2 θ2

2

(
−α sin2 γ

2
− β cos2 γ

2
+ σ

)
+ α sin2 γ

2
+ β cos2 γ

2
(10a)

$B(θ1, φ1, θ2, φ2) = cos2 θ2

2

[
cos2 θ1

2
(α + β − 2σ) − β sin2 γ

2
− α cos2 γ

2
+ σ

]

+ cos2 θ1

2

(
−β sin2 γ

2
− α cos2 γ

2
+ σ

)
+ β sin2 γ

2
+ α cos2 γ

2
. (10b)

These payoffs are the same as found by Marinatto and Weber [5] when the players are applying
the identity operators I1 and I2 with probabilities cos2 θ1

2 and cos2 θ2
2 , respectively, for the given

initial quantum state of the form (1).
(ii) φ1 + φ2 = π

2 , then equations (9a), (9b) reduce to

$A(θ1, φ1, θ2, φ2) = cos2 θ1

2

[
cos2 θ2

2
(α + β − 2σ) − α sin2 γ

2
− β cos2 γ

2
+ σ

]

+ cos2 θ2

2

(
−α sin2 γ

2
− β cos2 γ

2
+ σ

)
+ α sin2 γ

2
+ β cos2 γ

2

+
(α + β − 2σ)

4
sin γ sin θ1 sin θ2, (11a)

$B(θ1, φ1, θ2, φ2) = cos2 θ2

2

[
cos2 θ1

2
(α + β − 2σ) − β sin2 γ

2
− α cos2 γ

2
+ σ

]

+ cos2 θ1

2

(
−β sin2 γ

2
− α cos2 γ

2
+ σ

)
+ β sin2 γ

2
+ α cos2 γ

2

+
(α + β − 2σ)

4
sin γ sin θ1 sin θ2. (11b)

In the context of Marinatto and Weber scheme [5, 15] above payoffs for the two players
correspond to a situation when the strategies of the players are linear combination of operators I
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and flip operator σx of the form Oi = √
piI+

√
1 − piσx with pi = cos2 θi

2 and initial entangled
state is of the form given in equation (1).

Case (b). When δ = γ and
(i) φ1 �= 0, φ2 �= 0 then payoffs given by the equations (9a), (9b), very interestingly,

change to the payoffs as if the game has been quantized using Eisert et al [4] scheme for the
initial quantum state of the form (1). In this situation the payoffs for both the players are

$A(θ1, φ1, θ2, φ2) = cos2 θ1

2
cos2 θ2

2

[
η1 sin2 γ

2
+ ξ1 cos2 γ

2
+ χ1 cos 2(φ1 + φ2) − σ

]

+ sin2 θ1

2
sin2 θ2

2

(
η1 cos2 γ

2
+ ξ1 sin2 γ

2
− χ1 − σ

)

+
(β − σ)

2
sin γ sin θ1 sin θ2 sin(φ1 + φ2) + σ (12a)

$B(θ1, φ1, θ2, φ2) = cos2 θ1

2
cos2 θ2

2

[
ξ1 sin2 γ

2
+ η1 cos2 γ

2
− χ1 cos 2(φ1 + φ2) − σ

]

+ sin2 θ1

2
sin2 θ2

2

(
ξ1 cos2 γ

2
+ η1 sin2 γ

2
+ χ1 − σ

)

+
(α − σ)

2
sin γ sin θ1 sin θ2 sin(φ1 + φ2) + σ, (12b)

where ξ1 = α cos2 γ

2 + β sin2 γ

2 , η1 = α sin2 γ

2 + β cos2 γ

2 and χ1 = (α−β)

2 sin2 γ . To draw a
better comparison we take δ = γ = π

2 then the payoffs given by equations (12) reduce to

$A(θ1, φ1, θ2, φ2) = (α − σ) cos2 θ1

2
cos2 θ2

2
sin2 (φ1 + φ2)

+ (β − σ)

[
cos

θ1

2
cos

θ2

2
sin(φ1 + φ2) + sin

θ1

2
sin

θ2

2

]2

+ σ (13a)

$B(θ1, φ1, θ2, φ2) = (α − σ)

[
cos

θ1

2
cos

θ2

2
sin(φ1 + φ2) + sin

θ1

2
sin

θ2

2

]2

+ (β − σ) cos2 θ1

2
cos2 θ2

2
sin2 (φ1 + φ2) + σ. (13b)

The payoffs given in equations (13) have already been found by Du et al [16] through the
Eisert et al scheme [4].

(ii) φ1 = φ2 = 0 then, as shown by Eisert et al [4, 17], one gets classical payoffs with
mixed strategies when one parameter set of strategies is used for the quantization of the game.
For a better comparison putting γ = δ = π

2 and φ1 = φ2 = 0 in equations (12a) and (12b)
the same situation occurs and the payoffs reduce to

$A(θ1, φ1, θ2, φ2) = α cos2 θ1

2
cos2 θ2

2
+ β sin2 θ1

2
sin2 θ2

2

+ σ

(
cos2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

)
(14a)

$B(θ1, φ1, θ2, φ2) = β cos2 θ1

2
cos2 θ2

2
+ α sin2 θ1

2
sin2 θ2

2

+ σ

(
cos2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

)
. (14b)
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In this case the game behaves just like classical game where the players are playing mixed
strategies with probabilities cos2 θ1

2 and cos2 θ2
2 respectively.

Case (c). When δ �= γ and φ1 = 0, φ2 = 0, then payoffs given by the equations (9a), (9b)
reduce to

$A(θ1, φ1,θ2, φ2) = cos2 θ1

2

[
cos2 θ2

2
(α + β − 2σ) − α sin2 (γ − δ)

2
− β cos2 (γ − δ)

2
+ σ

]

+ cos2 θ2

2

[
−α sin2 (γ − δ)

2
− β cos2 (γ − δ)

2
+ σ

]

+ α sin2 (γ − δ)

2
+ β cos2 (γ − δ)

2
(15a)

$B(θ1, φ1,θ2, φ2) = cos2 θ1

2

[
cos2 θ2

2
(α + β − 2σ) − β sin2 (γ − δ)

2
− α cos2 (γ − δ)

2
+ σ

]

+ cos2 θ2

2

[
−β sin2 (γ − δ)

2
− α cos2 (γ − δ)

2
+ σ

]

+ β sin2 (γ − δ)

2
+ α cos2 (γ − δ)

2
. (15b)

These payoffs are equivalent to that of Marinatto and Weber [5] when γ replaced with γ − δ.

Case (d). When δ �= 0 and γ = 0 then from equations (9a), (9b) the payoffs of the players
reduce to

$A(θ1, φ1, φ2, θ2) = cos2 θ1

2

[
cos2 θ2

2
(α + β − 2σ) − α sin2 δ

2
− β cos2 δ

2
+ σ

]

+ cos2 θ2

2

(
−α sin2 δ

2
− β cos2 δ

2
+ σ

)
+ α sin2 δ

2
+ β cos2 δ

2

− (α − β)

2
sin δ sin θ1 sin θ2 sin(φ1 + φ2) (16a)

$B(θ1, φ1, φ2, θ2) = cos2 θ2

2

[
cos2 θ1

2
(α + β − 2σ) − β sin2 δ

2
− α cos2 δ

2
+ σ

]

+ cos2 θ1

2

(
−β sin2 δ

2
− α cos2 δ

2
+ σ

)
+ β sin2 δ

2
+ α cos2 δ

2

+
(α − β)

2
sin δ sin θ1 sin θ2 sin(φ1 + φ2). (16b)

This shows that the measurement plays a crucial role in quantum games as even if the initial
state is unentangled, i.e., γ = 0, arbiter can still apply entangled basis for the measurement
to obtain quantum mechanical results. The above payoffs are similar to that of Marinatto and
Weber for the Battle of the Sexes games if δ is replaced by γ.

3. Conclusion

A generalized quantization scheme for non-zero sum games is proposed. The game of Battle
of the Sexes has been used as an example to introduce this quantization scheme. However,
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our quantization scheme is also applicable to other games. This new scheme reduces to
Eisert et al’s [4] scheme under the condition

δ = γ, φ1 + φ2 = π/2

and to Marinatto and Weber’s [5] scheme when

δ = 0, φ1 = 0, φ2 = 0.

In the above conditions γ is a measure of entanglement of the initial state. For γ = 0, classical
results are obtained when δ = 0, φ1 = 0, φ2 = 0. Furthermore, we have identified some
interesting situations which are not apparent within the two existing quantization schemes.
For example, with δ �= 0, non-classical results are obtained for an initially unentangled state.
This shows that the measurement plays a crucial role in quantum games.
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